

Building Systems IntegrationEnergy and Cost Analysis

The Milton Hershey School New Supply Center

Justin Bem

AE Senior Thesis – Spring 2007

Mechanical Option

Penn State University

MILTON HERSHEY SCHOOL FOUNDED 1909

Project and Building Background **Existing Conditions** Mechanical System Redesign DOAS/ Water Source Heat Pumps Condenser Loop Heat Recovery System Absorption Chiller-Heater Technology **Redesigned Chiller/Boiler Plants** Life Cycle Cost Analysis and Payback Structural/Construction Breadth AHU Relocation Roof Structure Impact Mezzanine Floor Detailed Cost Estimate **Electrical Breadth** Redesign's effect on Power Systems Conclusions and Recommendations

Project and Building Background

Existing Conditions Mechanical System Redesign DOAS/ Water Source Heat Pumps Condenser Loop Heat Recovery System Absorption Chiller-Heater Technology **Redesigned Chiller/Boiler Plants** Life Cycle Cost Analysis and Payback Structural/Construction Breadth AHU Relocation Roof Structure Impact Mezzanine Floor Detailed Cost Estimate **Electrical Breadth** Redesign's effect on Power Systems Conclusions and Recommendations

Project and Building Background

Owner

- The Milton Hershey School

Location

- The Milton Hershey School Campus, Hershey, PA

Project Size

- 110,000 square feet

Total Cost

- \$23,500,000
- **Design-Bid-Build Contract**

Construction Dates

- July 2006 – July 2007

Project and Building Background

The Supply Center

- General Office and Conference Rooms
- Kitchen/Food Preparation Center
- Bakery
- Clothing Store and Alterations Seamstress
- Mail Distribution Center
- General Building and MHS Campus Storage

Project and Building Background **Existing Conditions** Mechanical System Redesign DOAS/ Water Source Heat Pumps Condenser Loop Heat Recovery System Absorption Chiller-Heater Technology **Redesigned Chiller/Boiler Plants** Life Cycle Cost Analysis and Payback Structural/Construction Breadth AHU Relocation Roof Structure Impact Mezzanine Floor Detailed Cost Estimate **Electrical Breadth** Redesign's effect on Power Systems Conclusions and Recommendations

Existing Conditions

Air Side Mechanical System

- 14 Total Air Handling Units
 - 10 VAV Units Serving General Office and Clothing Areas
 - 4 CAV Units 100% Outdoor Air Make-Up Units for Kitchen/Bakery
 - Chilled/Hot Water Coils
 - Housed in Elevated Mechanical Mezzanine Floor

McQuay Custom Air Handling Unit

Existing Conditions

Existing Chiller Plant

(2) 270 ton Water Cooled Centrifugal Chillers

- Primary-Secondary Pumping
- 45°F Chilled Water Serves AHU Coils and Walk-in Freezer Condenser
- Electric Driven Vapor Compression Machines
- Housed in 1st Floor Mechanical Room

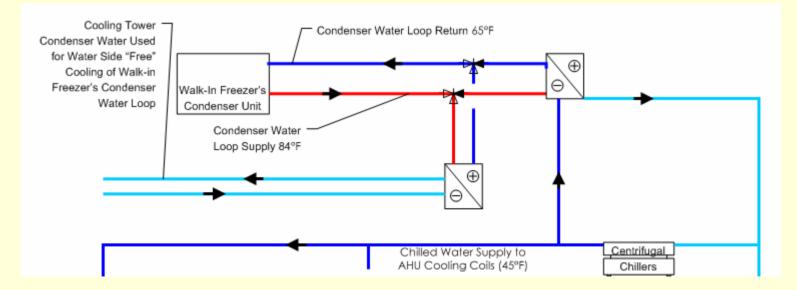
Existing Boiler Plant

(3) Natural Gas Fired Steam Boilers

- Handles All Building HVAC Heating Demands
- Meets Domestic Hot Water Heating Demands

Trane Centrifugal Chiller

Existing Conditions



Walk-in Freezer Condenser Water Loop

Rejected Heat from Condenser to water loop

- Removes Additional Heating Load from Kitchen Space
- Load Is Met Directly By Chilled Water Plant Via Plate-Frame HX's
- Water Side "Free" Cooling Is Utilized in the Winter for Heat Rejection

Project and Building Background **Existing Conditions** Mechanical System Redesign DOAS/ Water Source Heat Pumps Condenser Loop Heat Recovery System Absorption Chiller-Heater Technology **Redesigned Chiller/Boiler Plants** Life Cycle Cost Analysis and Payback Structural/Construction Breadth AHU Relocation Roof Structure Impact Mezzanine Floor Detailed Cost Estimate **Electrical Breadth** Redesign's effect on Power Systems Conclusions and Recommendations

MILTON HERSHEY SCHOOL FOUNDED 1909

Mechanical System Redesign

Goals and Objectives

- Increase Energy Efficiency
- Low Life Cycle Cost
- Affordable (Low First Cost or 2-4 Year Payback Period)

Integration of All Building Systems with HVAC System

- Recover Waste Heat
- Perform Multiple Functions from One Fuel Source

Existing Conditions Mechanical System Redesign DOAS/ Water Source Heat Pumps Condenser Loop Heat Recovery System Absorption Chiller-Heater Technology **Redesigned Chiller/Boiler Plants** Life Cycle Cost Analysis and Payback Structural/Construction Breadth AHU Relocation Roof Structure Impact Mezzanine Floor Detailed Cost Estimate **Electrical Breadth** Redesign's effect on Power Systems Conclusions and Recommendations

Project and Building Background

Mechanical System Redesign DOAS/ Water Source Heat Pumps

DOAS at The Supply Center

- -10 Existing VAV Air Handling Units Replaced with 2 DOAS Units
- Saves in First Cost
- Saves in Fan and Chiller Energy

Water Source Heat Pumps at The Supply Center

- Water Source Loop Integrates Other Building Systems --Condenser Water Loop Heat Recovery
- Gives Ability to Heat and Cool Simultaneously

PENNSTATE

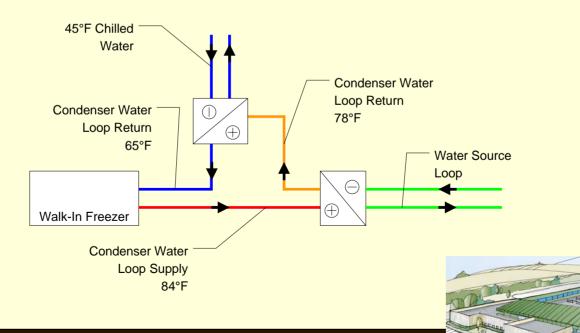
Project and Building Background **Existing Conditions Mechanical System Redesign** DOAS/ Water Source Heat Pumps Condenser Loop Heat Recovery System Absorption Chiller-Heater Technology **Redesigned Chiller/Boiler Plants** Life Cycle Cost Analysis and Payback Structural/Construction Breadth AHU Relocation Roof Structure Impact Mezzanine Floor Detailed Cost Estimate **Electrical Breadth** Redesign's effect on Power Systems Conclusions and Recommendations

Mechanical System Redesign Condenser Loop Heat Recovery

Walk-in Freezer's Reject Heat to a Condenser Water Loop

- Must Be Cooled for Continues Operation of Freezers
- Potential for a Large Amount of Energy Recovery

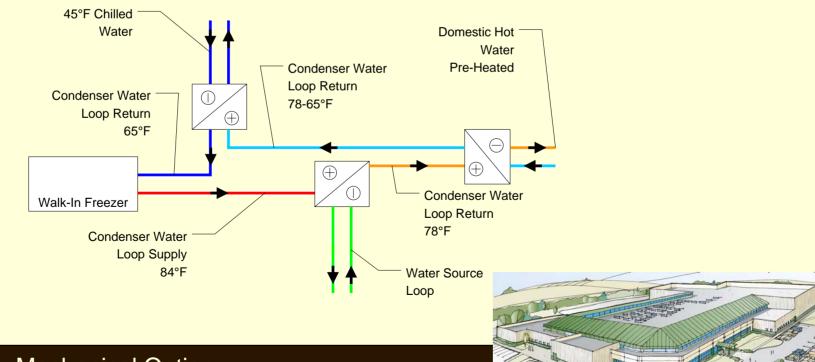
135gpm Flow Rate 84°F Hot Temperature 65°F Operating Temperature 1282 MBH of Possible Heat Recovery



Mechanical System Redesign Condenser Loop Heat Recovery

Heat Recovery In Water Source Loop

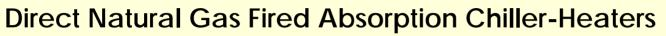
- Water Source Heat Pump Loop Requires Winter Time Heat Addition
- Operating Temperature of 68°F
- Condenser Water Loop Serves as Heat Source Via Heat Exchanger



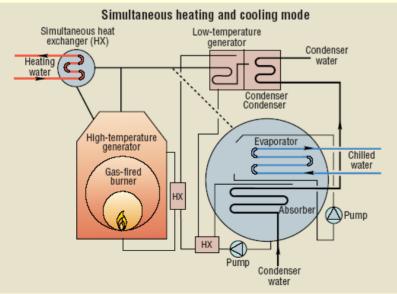
Mechanical System Redesign Condenser Loop Heat Recovery

Heat Recovery In Domestic Hot Water Pre-Heat

- High Domestic Hot Water Demand at The Supply Center
- Condenser Loop Pre-Heats Water to 76-81°F (Saves 35% Heating Energy)



Project and Building Background **Existing Conditions Mechanical System Redesign** DOAS/ Water Source Heat Pumps Condenser Loop Heat Recovery System Absorption Chiller-Heater Technology **Redesigned Chiller/Boiler Plants** Life Cycle Cost Analysis and Payback Structural/Construction Breadth AHU Relocation Roof Structure Impact Mezzanine Floor Detailed Cost Estimate **Electrical Breadth** Redesign's effect on Power Systems Conclusions and Recommendations

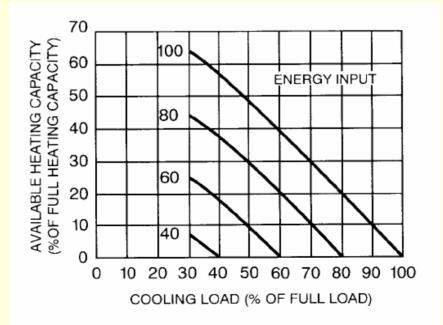


Mechanical System Redesign Absorption Chiller-Heater Technology

- Utilizes Natural Gas Service at The Supply Center
- Typical Single Effect LiBr/Water Absorption Cycle
- Includes Heat Exchanger in High Temperature Generator for Simultaneous Cooling and Hot Water Production (Up to 210°F)

Justin Bem – Mechanical Option

PENNSTATE



Mechanical System Redesign Absorption Chiller-Heater Technology

Direct Natural Gas Fired Absorption Chiller-Heaters

- Simultaneous Heating Comes at the Expense of Cooling Production
- Chiller-Heater Must Run at 30% Cooling Capacity Minimum

Project and Building Background **Existing Conditions Mechanical System Redesign** DOAS/ Water Source Heat Pumps Condenser Loop Heat Recovery System Absorption Chiller-Heater Technology **Redesigned Chiller/Boiler Plants** Life Cycle Cost Analysis and Payback Structural/Construction Breadth AHU Relocation Roof Structure Impact Mezzanine Floor Detailed Cost Estimate **Electrical Breadth** Redesign's effect on Power Systems Conclusions and Recommendations

Mechanical System Redesign Redesigned Chiller/Boiler Plants

Chiller-Heater Selection

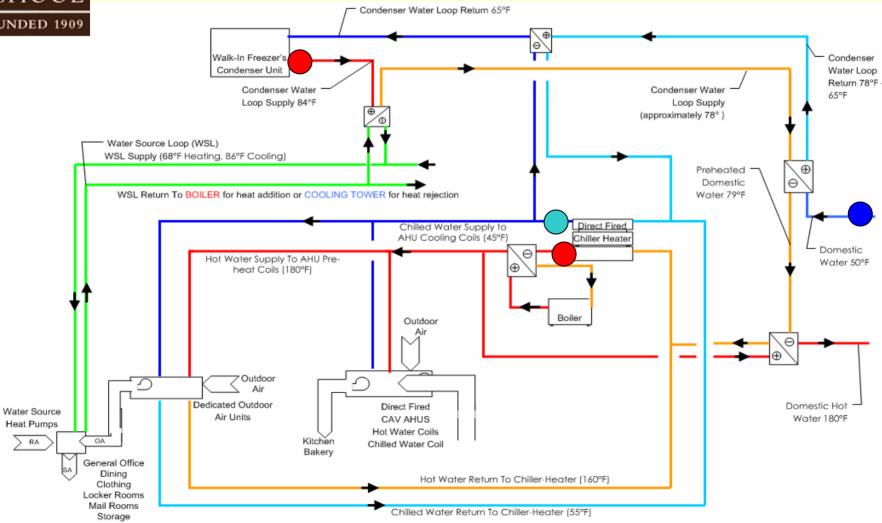
- Sized to Meet Cooling and HVAC/Domestic Hot Water Needs
- (2) 240 ton Chiller-Heaters Used
- Meets Cooling Load with Enough Capacity to Produce Hot Water

Redundancy

-If one Chiller-Heater Is Off Line, Second Meets Critical Load -- Walk-in Freezer's Condenser System

-Back-up Boiler to Meet Heating Demand in This Situation

INTEGRATES HEATING, COOLING, CONDENSER WATER, AND DOMESTIC WATER SYSTEMS!



Mechanical System Redesign Redesigned Chiller/Boiler Plants

Project and Building Background **Existing Conditions Mechanical System Redesign** DOAS/ Water Source Heat Pumps Condenser Loop Heat Recovery System Absorption Chiller-Heater Technology **Redesigned Chiller/Boiler Plants** Life Cycle Cost Analysis and Payback Structural/Construction Breadth AHU Relocation Roof Structure Impact Mezzanine Floor Detailed Cost Estimate **Electrical Breadth** Redesign's effect on Power Systems Conclusions and Recommendations

Annual Operating Cost Comparison

	Existing System	Redesign w/ Chiller-Heater
Cooling Cost	\$67,577	N/A
HVAC Heating Cost	\$23,016	N/A
Hot Water Heating Cost	\$58,371	N/A
Combined Heating and Cooling Cost	N/A	\$117,370
Air System Fan Cost	\$21,303	\$12,318
Pump Cost	\$29,274	\$20,480
Cooling Tower Cost	\$9,920	\$16,440
Total	\$209,461	\$166,608

\$42,800 Annual Cost Savings!

Initial Cost Comparison

Equipment (Quantity and Type)	Existing System	Redesign Chiller-heater Option
Chillers (2 Centrifugal)	178,000	-
Chiller-Heaters (2)	-	450,000
HVAC Boiler (1 4500 MBH)	21,800	-
HW Boiler (2 6500 MBH)	61,000	-
Supplemental Boiler (1 9000 MBH)	-	85,000
Heat Exchangers (for HW system)	10,000	-
DOAS AHUs (2)	-	47,840
VAV AHUs (10)	309,310	-
Plate-Frame HX	10,000	20,000
VAV Boxes w/reheat	32,730	-
Heat Pumps	_	60,045
TOTAL	\$622,840	\$682,885

\$60,000 More Expensive

20 Year Life Cycle Cost Comparison

Existing System

Redesign System

NPW	\$2,266,510	\$1,829,863
Initial Cost	\$622,840	\$682,885
20 Yr LCC	\$2,889,350	\$2,512,748

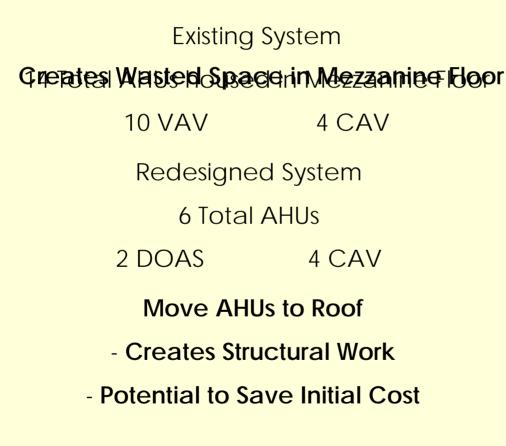
\$376,600 Savings Over 20 Years!

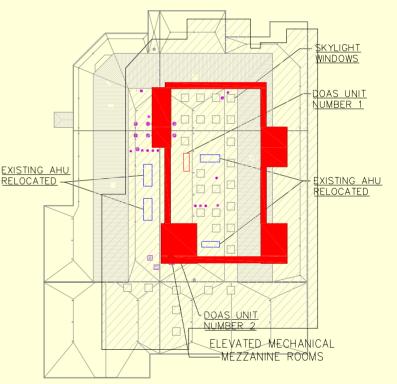
Mechanical Redesign Conclusions

- Integrates Multiple Building Systems
- More Expensive Up Front
- Cheaper to Operate
- Least Expensive 20 Year Life Cycle Cost

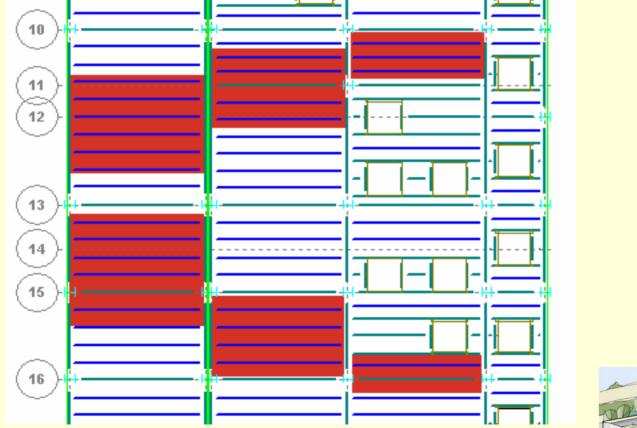
Payback In Just Under 2 Years!

MILTON HERSHEY SCHOOL FOUNDED 1909


Project and Building Background **Existing Conditions** Mechanical System Redesign DOAS/ Water Source Heat Pumps Condenser Loop Heat Recovery System Absorption Chiller-Heater Technology **Redesigned Chiller/Boiler Plants** Life Cycle Cost Analysis and Payback Structural/Construction Breadth AHU Relocation Roof Structure Impact Mezzanine Floor Detailed Cost Estimate **Electrical Breadth** Redesign's effect on Power Systems Conclusions and Recommendations



Structural/Construction Breadth AHU Relocation



Structural/Construction Breadth AHU Relocation

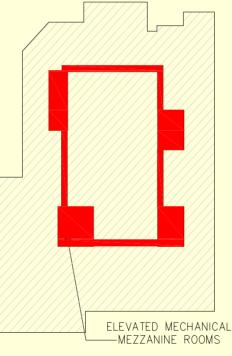
Structural/Construction Breadth AHU Relocation

Additional Cost of Redesign Is Small!

BEAM/JOIST	LENGTH	AMOUNT	\$COST/LF	TOTAL COST
28KCS5	37	14	11	\$5,698
26K7	37	8	6.35	\$1,879.6
	JOIST TOTAL COST \$7,577.6			
W 8x10	37	22	9.65	\$7,855.1
	Difference \$277.5			\$277.5

MILTON HERSHEY SCHOOL FOUNDED 1909

Project and Building Background **Existing Conditions** Mechanical System Redesign DOAS/ Water Source Heat Pumps Condenser Loop Heat Recovery System Absorption Chiller-Heater Technology **Redesigned Chiller/Boiler Plants** Life Cycle Cost Analysis and Payback Structural/Construction Breadth AHU Relocation Roof Structure Impact Mezzanine Floor Detailed Cost Estimate **Electrical Breadth** Redesign's effect on Power Systems Conclusions and Recommendations



Structural/Construction Breadth Mezzanine Floor Cost

No Need to Construct Mezzanine Floor Only Held Air Handling Units

Structural/Construction Breadth Mezzanine Floor Cost

Large First Cost Savings for Not Construction Mezzanine Floor

	Total Construction Cost
Steel Members	\$122,986.1
1-1/2" Steel Decking	\$19,762.75
139 C.Y. of 4000psi Concrete	\$11,709.6
TOTAL FLOOR COST	\$154,458.45

MILTON HERSHEY SCHOOL FOUNDED 1909

Project and Building Background **Existing Conditions** Mechanical System Redesign DOAS/ Water Source Heat Pumps Condenser Loop Heat Recovery System Absorption Chiller-Heater Technology **Redesigned Chiller/Boiler Plants** Life Cycle Cost Analysis and Payback Structural/Construction Breadth AHU Relocation Roof Structure Impact Mezzanine Floor Detailed Cost Estimate **Electrical Breadth** Redesign's effect on Power Systems Conclusions and Recommendations

Electrical Breadth Power System Alterations

Less Electric Driven Mechanical Equipment

- Chillers, 8 AHUs, Boiler Accessories
- Changes Load on Distribution Panels
- Saves Cost on Feeder and Wire Sizes

Electrical Breadth Power System Alterations

Electrical Cost Savings

Electrical Cost Savings	\$9,189
New Equipment Electrical Cost	\$5,534
Total Electrical Cost Savings	\$3,600

Mechanical Redesign Creates Electrical Cost Savings!

MILTON HERSHEY SCHOOL FOUNDED 1909

Project and Building Background **Existing Conditions** Mechanical System Redesign DOAS/ Water Source Heat Pumps Condenser Loop Heat Recovery System Absorption Chiller-Heater Technology **Redesigned Chiller/Boiler Plants** Life Cycle Cost Analysis and Payback Structural/Construction Breadth AHU Relocation Roof Structure Impact Mezzanine Floor Detailed Cost Estimate **Electrical Breadth** Redesign's effect on Power Systems **Conclusions and Recommendations**

Conclusions and Recommendations Final Cost Analysis

Overall Building System Redesign Cost Analysis

	Existing System	Redesign
Mechanical 1 st Cost	\$622,840	\$682,885
Mezzanine Cost	\$154,458	N/A
Additional Structural Cost	N/A	\$277
Additional Electrical Cost	\$3,600	N/A
Total 1 st Cost	\$780,898	\$683,173

Conclusions and Recommendations Final Cost Analysis

Conclusions Compared to Existing System

- Mechanical Redesign Saves Energy and Cost Over 20 Years
- Integrates Other Building Systems
- Creates Overall First Cost Savings!

\$ 97,725 Less Upfront! \$ 42,800 Less Per Year! \$ 531,000 Saved Over 20 Years!

Redesign Is Beneficial

Acknowledgments

Thank You!

AE Department

- Advisor Dr. Bahnfleth
- H.F. Lenz Company
- Tom Hovan, P.E.

Structural Help

- Brian Barna & Cynthia Milinichik
- **Construction Help**
- Kyle Conrad
- My Great Friends for Their Support!
- Andy, Jess, Kyle, Kevin

Building Systems Integration The Milton Hershey School Supply Center

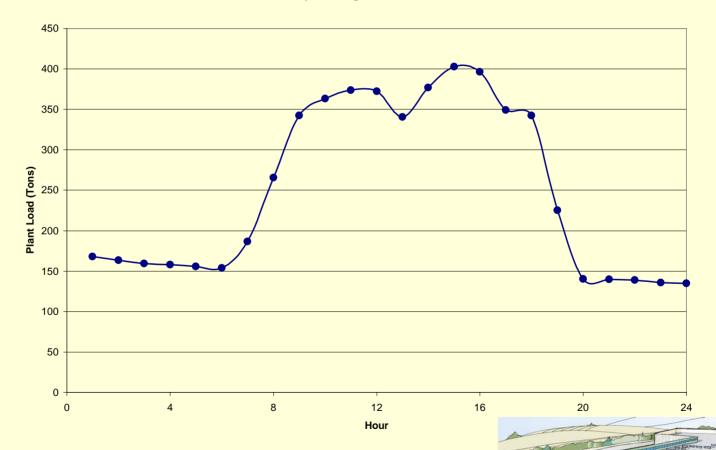
Questions?

Mechanical System Redesign Redesigned Chiller/Boiler Plants

Plant Load Analysis

- Walk-in Freezer's Heat Rejection Creates 106 ton Base Load
- Peak Cooling Load at 390 tons
- -High Hot Domestic Hot Water Demand
 - -- Excellent Opportunity for Simultaneous Heating and Cooling!

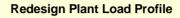
PENNSTATE


250

8 5

Existing System Chiller Plant Load Profile

Daily Cooling Load Profile



New System Chiller Plant Load Profile

